On Weighting in State-space Subspace System Identification
نویسندگان
چکیده
The aim of this contribution is to analyze a class of state-space subspace system identiication (4SID) methods. In particular, the eeect of diierent weighting matrices is studied. By a linear regression formulation, diierent cost-functions, which are rather implicit in the ordinary framework of 4SID, are compared. Expressions for asymptotic variances of pole estimation error are analyzed and from these expressions, some dii-culties in choosing user speciied parameters are pointed out. Another interesting result obtained is that a row weighting in the subspace estimation step does not aaect the pole estimation error, asymptotically. This result holds for two diierent pole estimation methods, namely the shift invariance method and an optimally weighted least-squares method. In a numerical example, relative eeciency of the optimally weighted pole estimation method is indicated.
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملSubspace system identification
We give a general overview of the state-of-the-art in subspace system identification methods. We have restricted ourselves to the most important ideas and developments since the methods appeared in the late eighties. First, the basis of linear subspace identification are summarized. Different algorithms one finds in literature (Such as N4SID, MOESP, CVA) are discussed and put into a unifyin...
متن کاملSubspace Identification Using the Parity Space
It is known that most subspace identification algorithms give biased estimates for closed-loop data due to a projection performed in the algorithms. In this work, consistency analysis of SIMPCA is given and the exact input requirement is formulated. The effect of column weighting in subspace identification algorithms is discussed and the column weighting for SIMPCA is designed which gives consi...
متن کاملN2SID: Nuclear norm subspace identification of innovation models
The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed ...
متن کامل520a Simpca with Modified Instrumental Variable to Improve Estimation Accuracy
Jin Wang and S. Joe Qin Based on projection techniques in Euclidean space, subspace identification methods (SIMs) have been one of the main streams of research in system identification (Gevers, 2003). Several representative algorithms have been published, including canonical variate analysis (CVA, Larimore, 1983; 1990), numerical algorithm of subspace state space system identification (N4SID, V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995